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Abstract

This paper analyses the impact of a tradable production quota on firm entry

and exit in the agricultural industry. We develop a dynamic stochastic equilibrium

framework considering that a release of production capacity by exiting firms affects

the investment options for entrants. Firms’ investment and exit decisions depend

on future output and quota prices, which in turn will be affected by the evolution

of industry structures themselves. Contrary to many static models we find that

introducing a quota system may foster structural change. A tradable quota increases

the liquidation value and makes inefficient firms cease production despite higher

output prices.
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1 Introduction

Structural change, that is changes in the composition of the elements of an industry such as

number and size of firms over time, is a fundamental phenomenon of market economies.

Such change can be understood as an aggregated outcome of firms’ adjustments to a

changing economic environment such as price or policy changes, and technical progress

(cf. Dunne et al., 2013). Firms’ decisions that affect structural change are, for example,

market entries and exits, growth and shrinkage, change of the production structure or

the adoption of new key technologies (cf. Caves, 1998). Understanding these adjustment

processes is of great interest because structural change determines a sector’s competi-

tiveness (Jorgenson and Timmer, 2011). Moreover, these processes have consequences for

distributional issues, regional development and rural employment and other policies (Piet

et al., 2012).

A coherent analysis of structural change is challenging since firms’ decisions have to

be made in a dynamic and stochastic environment under possible capacity constraints,

which lead to interdependent decisions. This is particularly true for the agricultural sec-

tor because the availability of crucial production factors such as land is usually limited.

This shortage, in combination with immobility as in the case of farmland, cause a strong

interdependence of firms’ decisions within a region (Chavas, 2001). That is, farms usu-

ally cannot grow in size unless other farms1 exit since only the capacity of ceasing firms

provides new factor supply like land or other limited inputs (cf. Balmann et al., 2006).

Hence, the price for production capacity strongly depends on the exit/shrinking rate de-

termining the amount of free capacity, as well as on expansion activities of the other firms

(e.g. Weiss, 1999; Zepeda, 1995; Richards and Jeffrey, 1997). The impact of scarcity on

firms’ decision making and the resulting competition for a production factor may further

increase if some firms expect to benefit from economies of size. Given that production

capacity as such represents a valuable asset, a firm’s liquidation value may increase under

binding capacity constraints.

The European dairy sector is particularly exposed to limited capacity. Besides the

scarcity of farmland for primary production, the downstream market was highly reg-

ulated by production quotas (1984-2015). That is, overall milk supply was limited and

attached to a production right. Our paper addresses the research question of how this spe-

cific capacity constraint – production quota – affects the dynamics of structural change.

Particularly farms’ investment/disinvestment decisions have been heavily influenced by

the milk quota regime and it is frequently hypothesised that introducing a production

1Farms and firms will be used interchangeably throughout the paper.
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quota such as those in the European Union or Canada may have slowed down structural

change and hindered efficient adjustment processes (Colman, 2000). But is this also true

if quotas are traded and thus increase the liquidation value of exiting farms (Barichello,

1995)?

To assess the impact that a production quota has on structural dynamics, we employ

a dynamic stochastic equilibrium model (DSGE)2 that exhibits three important charac-

teristics: First, entry and exit decisions of farms, as well as prices and production output

are determined endogenously. That is, firms take the prospective entry/exit of other firms

into consideration. Second, decisions are made in a dynamic framework. This approach

allows us to track changes in the sector’s composition. Third, the model is driven by a

stochastic component.

The modelling framework rests on earlier work by Jovanovic (1982) and Hopenhayn

(1992), who analyse the dynamics of an industry with endogenous entry and exit. The

model considers a perfectly competitive but heterogeneous industry, where firms differ

with respect to their productivity level, which is stochastic and assumed to follow a

Markov process. Firms’ entry and exit decisions are based on rational expectations of

profits and are thus affected by the development of the output price as well as by the

current state and evolution of the productivity. We enhance the basic model of Hopen-

hayn (1992) by introducing capacity constraints at the sector level. Entry costs, as well

as the liquidation value of exiting firms should correlate with the industry structure. The

overall limitation of capacities needed to expand in production is modelled through entry

cost strongly increasing with the size of the sector. In contrast to Hopenhayn (1992) we

analyse the sector dynamics in a finite time horizon which allows us to keep track of farms’

adjustment processes in each period.

We apply our theoretic model to the West German dairy sector. To determine whether

the milk quota as such and the possibility of trading slows down or accelerates structural

change, we investigate a situation with and without a tradable quota. As one would ex-

pect, the output prices are higher if investment or entry of new firms is constrained by a

production quota. Surprisingly, we find that the critical productivity threshold for staying

in the industry is also higher in this case. This means that even relatively efficient farms

are now better off selling their quota rights instead of sustaining production.

The contribution of this paper is twofold. First, we provide a dynamic stochastic frame-

work that incorporates a limited production capacity into the firms’ entry/exit decision.

Instead of analysing steady state properties, which many other research studies do, we

2DSGE models are often used, particularly for macro-economic questions. See, for instance, Dewachter
and Wouters (2014) for modelling endogenous financial risk, or Matsumoto et al. (2011) for studying the
role of shocks on asset price volatility.

3



consider a finite dynamic equilibrium. The finite nature of the model may not fully repre-

sent rational firm behavior in later periods, though it allows us to keep track of structural

changes in greater detail to explore the effect of a tradable production quota on the farm

size distribution and the investment/disinvestment behavior of firms. Second, we illustrate

how to calibrate a dynamic stochastic entry/exit-model using farm-level panel data, as

well as how to calculate a finite equilibrium numerically.

The remainder of this article is structured as follows. In section 2 we present the dy-

namic stochastic framework and show how an explicit equilibrium can be computed. The

focus will be on incorporating limited sectoral capacity into the farms’ value function. The

theoretic model is applied to the West German dairy sector in section 3. After describ-

ing the development of the industry over recent decades, we calibrate model parameters

and calculate the dynamic market equilibrium. Based on the equilibrium outcome we will

discuss the effect of a milk quota on farms’ entry and exit decisions. Section 4 concludes

and provides an outlook on further research.

2 Modelling structural change under capacity con-

straints

2.1 Overview and classification

The analysis of structural change is a well-established topic in agricultural economics and

much effort has been spent on modelling farm adjustment processes theoretically and

empirically (Balmann et al., 2006). However, most existing models consider either single

farms (eg. Foltz, 2004), adopt an aggregated view of the sector (Wolf and Sumner, 2001),

or compare only cross country differences (Adamopoulos and Restuccia, 2014). Individ-

ual farm models allow for dynamic stochastic adjustment behaviour, but they have to

assume exogenous price processes and thus do not ensure rational expectations equilibria

on product and factor markets. In contrast, sectoral equilibrium models leave little room

for a micro-economic foundation of decision making (Féménia and Gohin, 2011). Only

few modelling approaches take the interdependencies of growing and shrinking farms into

account when describing the adjustment processes within a sector. These modelling ap-

proaches encompass multi-agent models, real options models and game theoretic models.

Multi-agent models consist of sets of rules defining how agents make individual deci-

sions and how they interact with each other and with their environment. Agent-based

models have been quite successful in explaining stylised empirical facts such as the path
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dependency of systems, which are not well accounted for by existing representative-agent

equilibrium models (Balmann et al., 2013). An advantage of this modelling framework is

its flexibility. Heterogeneity of the agents with regard to their production capacities and

constraints can be easily implemented. The usefulness of MAM, however, is not unchal-

lenged; they have been criticised because the outcome of complex dynamic simulations

is difficult to interpret and generalise (Leombruni and Richiardi, 2005). Moreover, it is

practically impossible to implement the concept of a rational expectations equilibrium.

Real options models have been developed to derive optimal investment and disinvest-

ment strategies for firms facing uncertainty and sunk costs while having some managerial

flexibility with regard to the timing of (dis)investments. Initially, real options models con-

sider single firms, however, Leahy (1993) shows that the optimal (dis)investment strategies

derived for individual firms are also valid in a competitive environment with free market

entry and homogeneous firms. Recently, Feil and Musshoff (2013) have utilised the real

options framework for an evaluation of agricultural policy schemes in a dynamic stochastic

context. By applying heuristic solution procedures these authors are able to relax simpli-

fying assumptions of previous models that strive for closed form solutions of the dynamic

equilibrium in a sector.

Game theoretic approaches have been applied to analyse the relationship between the

dynamics of market structure and competition. The seminal work by Ericson and Pakes

(1995) defines a dynamic stochastic game to describe the development of an oligopolis-

tic market structure with heterogeneous firms. These models are particularly useful for

explaining the emergence of asymmetric industry structures (Besanko and Doraszelski,

2004). Game theoretic models are capable of modelling growth and shrinkage of firms in

a given market with endogenous supply or constrained capacities, but they are difficult

to handle, particularly if there are more than two firms within the market.

Dynamic stochastic equilibrium models can sometimes provide a framework to over-

come this shortcoming. Authors like Hopenhayn (1992) or Asplund and Nocke (2006)

model a heterogeneous industry by a continuum of firms. Idiosyncratic uncertainty, which

every firm faces in its production process, thus cancels out at the aggregate level. As a

consequence, the evolution of the industry follows deterministic paths, and changes in the

industry structure can be pursued in greater detail.

Hopenhayn’s (1992) work is based on the concept of a stationary equilibrium and

idiosyncratic uncertainty, and investigates high turnover rates within industries. The dy-

namic stochastic model takes into account endogenous exit and possible subsequent entry

attached to sunk cost that are induced by exogenous firm-specific productivity shocks.3

3See also Bento (2014), who takes up the idea of Hopenhayn in modelling entry costs.
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Exit as a precondition for entry takes place as soon as a firm’s productivity shock falls

below a reservation value. This enables the reallocation of resources between the firms. In

the stationary equilibrium, entry and exit occur. Together with the productivity shocks

and the respective production decisions entry and exit determine the firm size and profit

distribution within that industry. Further, Hopenhayn’s findings reveal that the size dis-

tribution is stochastically increasing with age, meaning that larger firms have a higher

probability of survival.

Melitz (2003) extends the framework of Hopenhayn to consider monopolistic competi-

tion and analyses intra-industry effects of international trade. This author shows that the

least productive firms are forced to leave the market, while the most productive produce

for the export market. From a more global perspective this will lead to an international

re-allocation towards the more productive firms. The core model assumption that the pat-

terns of entry and exit are systematically related to productivity differences among firms

is confirmed by Fariñas and Ruano (2005). The authors further show that sunk costs are

one source of persistent heterogeneity in productivity, that is, in markets with high and

sunk entry costs, a lower productivity becomes more likely.

2.2 The formal model

The basic setup of our model draws closely upon the seminal papers of Jovanovic (1982)

and Hopenhayn (1992), whose respective approaches explicitly allow for endogenous entry

and exit of the firms, which is crucial for analysing structural change in agriculture under

capacity constraints.

We consider a perfectly competitive industry with a continuum of firms producing a

homogeneous good. Each firm takes the output price as given and chooses its optimal

output quantity. The output price will be determined by market clearance. The inverse

demand function D(Q) > 0 should be continuously differentiable and strictly decreasing.

We assume that limQ→+∞D(Q) = 0. The time horizon T < ∞ is finite and competition

takes place in discrete time (t = 0, ..., T ).

All firms have the same production technology but they differ with respect to their

productivity level. That is, we account for firm-specific productivity differences which

may be through farm size, capital stock, feed management, livestock management or

natural conditions. The firm-specific productivity is supposed to be the only source of

uncertainty faced by the firms.

We model the firm’s individual productivity as a stochastic parameter ϕt ∈ R, which
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follows the AR(1)-process

ϕt+1 = ρϕt + εt+1, ρ ∈ (0, 1] and εt+1
iid∼ N(νε, σ

2
ε). (1)

The stochastic process defined in (1) describes the evolution of a firm’s productivity and

is the same for all incumbents. Nevertheless, the realisation of the error term εt+1 is

independent across firms and over time. The process as given in (1) inherits the Markov

property and is time-homogeneous. Under the hypothesis ϕt = ϕ, it follows that ϕt+1 ∼
N(ρϕ+ νε, σ

2
ε). The density of this normal distribution is denoted by

f(z, ϕ) :=
1√

2πσ2
ε

exp

(
−(z − (ρϕ+ νε))

2

2σ2
ε

)
, (2)

and the conditional cumulative distribution function F (ϕ′|ϕ) = Prob(ϕt+1 ≤ ϕ′|ϕt = ϕ)

is given by

F (ϕ′|ϕ) =

∫ ϕ′

−∞
f(z, ϕ) dz. (3)

The function F (ϕ′|ϕ) constitutes a probability kernel and is continuous with respect to

both arguments. Moreover, it is strictly decreasing in ϕ if we keep ϕ′ fixed.4 That is, all

active firms can be explicitly distinguished by their current productivity level ϕt. The

distribution of these values across all firms thus expresses the state of the industry in

period t, which is denoted by the measure µt : B(R) → R+ defined on the Borel sets of

the real numbers.5 Hence, any changes of the industry structure, caused by the stochastic

productivity process as well as entry/exit of firms, translate into changes of µt.

We further proceed upon the assumption that firms with higher productivity levels are

able to produce any amount of output q at lower costs. This property is represented by a

twice continuously differentiable cost function c(ϕ, q), which is monotonically decreasing

in ϕ with the limits

lim
ϕ→+∞

c(ϕ, q) = 0 and lim
ϕ→−∞

c(ϕ, q) =∞, ∀q ≥ 0. (4)

Further, function c : R0
+ × R→ R0

+ should satisfy c(ϕ, 0) = 0, and

∂c

∂q
> 0 with

∂c

∂q
(0, ϕ) = 0,

∂2c

∂q2
> 0,

∂2c

∂ϕ∂q
≤ 0, lim

q̄→+∞

∂c

∂q
(q̄, ϕ) =∞. (5)

4If ϕ1 < ϕ2, the distribution F (·|ϕ2) stochastically dominates F (·|ϕ1).
5µt does not need to be a probability measure. The total mass µt(R) may be smaller or bigger than

one, indicating the size of industry.
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In each period t of the planning horizon all active firms have to choose their own

optimal production output. These firms take the output price pt ≥ 0, as well as their

current productivity level ϕt, as given and maximise:

max
qt≥0

pt qt − c(ϕt, qt). (6)

The first-order condition for a maximum in (6) implies that the optimal firm-specific

output q∗t satisfies

pt ≤
∂c

∂q
(ϕt, qt), with equality if qt > 0. (7)

The imposed restrictions on the cost function guarantee that for all valid combinations

of pt and ϕt, a unique solution q∗t = q∗(ϕt, pt) to (7) exists. The firm-specific optimal output

is thus a continuous function of the output price p and the productivity ϕ. Moreover, it

is (strictly) monotonically increasing in both arguments, and every firm will produce a

positive amount of output as long as the price is larger than zero.

The aggregate industry output Qt = Qs(pt, µt) depends on the structure of the industry

and is given by

Qs(pt, µt) =

∫
R
q∗(ϕ, pt) dµt(ϕ). (8)

In case the integral on the right-hand side exists for any output price, we infer from q∗’s

properties that Qs(p, µ) is continuous and increasing with respect to p.

Production incurs a fixed cost cf > 0, which is the same for all firms and has to be paid

at the beginning of each period before a new productivity level is revealed to incumbents

according to the Markov process (1). Hence, the fixed costs are sunk by the time firms

get to know their new realisation of ϕt and choose the production output. A firm’s profit

per period is then

π(pt, ϕt) := pt q
∗
t − c(ϕt, q∗t )− cf , (9)

with q∗t = q∗(ϕt, pt) being the optimal firm-specific output level. The properties of c(ϕ, q)

and q∗ imply that π(ϕ, p) is a continuous function as well, is strictly increasing in p and,

in case the output price is positive, also in ϕ. Furthermore, the period profits will tend to

the negative fixed costs π(ϕ, p)→ −cf whenever p→ 0 or ϕ→ −∞.

At the end of each period firms have the option to leave or enter the market. New firms

entering the market must acquire production capacity and have to pay entry costs kt > 0.

After paying both the entry and fixed production costs, each new firm is assigned with a

productivity level, which is drawn from the common distribution function G. As this is

the only kind of investment available to any firm, the same applies to established firms

willing to expand their production capacity. An extension of production capacity can be
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regarded as setting up new production units. Therefore, we do not distinguish between

new firms and expanding firms explicitly, but refer to both groups as entering firms.

When a production quota exists the entry costs will be directly related to the number of

firms leaving the industry. In this situation every incumbent possesses production capacity

which can be sold in case of exit. If a firm decides to leave the industry it will release

its capacity and receive a compensation payment rt. This liquidation value in turn will

depend on the demand for capacity generated by entering firms. In order to capture this

interdependency between entry costs and liquidation value we model both as a function

of the total industry mass µt(R). The industry mass depends on the number of firms

leaving or entering the market and describes growth/shrinkage of the industry; it can be

interpreted as a proxy for the availability of the production capacity at the sector level.

We introduce a continuous and non-decreasing function k and define the entry costs

kt := ce + k(µt(R)). The entry costs are composed of two parts: Entering firms have to

pay a constant part ce, which is sunk afterwards, and a variable part k(µt(R)), which

reflects the additional costs for quota rights. As the exit premium should be proportional

to the quota costs at time t, we define rt := k(µt(R)). If a production quota does not

exist the variable part drops out of the entry costs. Hence, we model a scenario without

limited capacity supply (free access) by setting the entry costs constant kt = ce and the

compensation payment equal to zero rt = 0.

A firm bases its entry/exit decision on the expected discounted future profits. The

discount rate for all firms is supposed to be 0 ≤ β < 1. If the output prices for all periods

are known and denoted by the vector p = (p0, ..., pT ), the value of an incumbent with

productivity ϕ at time t can be defined recursively by

vt(ϕ,p) = π(ϕ, pt) + β max

{
rt+1,

∫
R
vt+1(ϕ′,p)dF (ϕ′|ϕ)

}
, ∀ t = 0, ..., T − 1, (10)

which is composed of the current profits plus the optional liquidation or continuation

value. Since we assume a finite planning horizon, this definition holds true for all periods

but the last one. The value at the end of competition is just equal to the profits generated

in the final period vT (ϕ,p) = π(ϕ, pT ).

A firm stays in the industry as long as its continuation value offsets the exit premium

rt+1. The continuation value indicates the expected future profits conditioned on the

firm’s current productivity level. The exit-point xt describes the critical threshold for

being indifferent between staying in or leaving the market,

xt := inf

{
ϕ ∈ R :

∫
R
vt+1(ϕ′,p)dF (ϕ′|ϕ) ≥ rt+1

}
. (11)
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The assumptions made on the stochastic process and the period profits imply that all

firms with a productivity above the exit-point ϕt ≥ xt stay in the industry, while all firms

with a lower productivity ϕt < xt take the exit premium and quit. If the infimum in (11)

does not exist, we are in a situation where no exit occurs in period t and we formally set

xt = −∞.

The expected profits of a firm willing to enter the industry at the end of period t are

given by

vet+1(p) =

∫
R
vt+1(ϕ,p)dG(ϕ). (12)

We denote the mass of firms which decide to enter at time t and start production in the

following period by Mt. One should keep in mind that this may also include established

firms building up additional production units. An increasing number of active firms will

lead to a higher aggregate industry output and result in a lower market price. New firms

will be entering the industry as long as their expected future profits cover the entry costs,

i.e., in an equilibrium we have vet+1 ≤ kt+1. This condition must hold with equality if

Mt > 0.

Due to the large number of firms in the industry (recall that firms are assumed to

constitute a continuum), we do not have to deal with aggregate uncertainty. The frequency

distribution of productivity levels in upcoming periods is completely specified by the

stochastic productivity process and the entry/exit behaviour of firms.6 For a given exit-

point xt and entry-mass Mt, the industry structure in period t+ 1 is

µt+1((−∞, ϕ′]) =

∫
ϕ≥xt

F (ϕ′|ϕ)dµt(ϕ) +MtG(ϕ′). (13)

If both µt and G have Lebesgue densities mt(z) and g(z), the state of the sector µt+1 can

also be characterised by its density

mt+1(z) =

∫
ϕ≥xt

f(z, ϕ)mt(ϕ)dϕ+Mtg(z). (14)

2.3 Equilibrium analysis

As a direct consequence of (13), both industry output and market price follow determin-

istic sequences. Firms are atomistic and cannot affect price by the choice of their output

quantity. However, firms have perfect information about the strategic decisions of others

and are thus able to foresee the development of output prices. In a dynamic equilibrium

6A deterministic development of the industry structure is justified by the law of large numbers. Evi-
dence can be found in Judd (1985) or Feldman and Gilles (1985)
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they adjust their output as well as their entry/exit decisions to the anticipated prices.

These output prices must be reinforced by the strategic behaviour of firms. Keeping this

in mind, we define a dynamic stochastic equilibrium as follows:

Definition 1 (Dynamic Equilibrium). Given a starting distribution µ0, a dynamic equi-

librium consists of a finite sequence of measures {µ∗t} and vectors p∗,Q∗,x∗,M∗ containing

the market prices, aggregate industry output, exit-points and entry-masses for each period

such that for all times t = 1, ..., T the following conditions are satisfied:

(i) the output market is cleared

p∗t = D(Q∗t ),

Q∗t = Qs(p∗t , µ
∗
t ),

(ii) the exit-rule (11) holds with x∗t ,

(iii) no more firms have an incentive to enter the industry, i.e. vet (p
∗) ≤ kt, and

(iv) µ∗t is determined recursively by (13).

The question arises in which situations a dynamic equilibrium exists, and how it can be

detected?7 The challenge here is to find values p∗,x∗,M∗ such that the four equilibrium

conditions are fulfilled. We illustrate in the Appendix A.2 that explicit expressions for the

exit/entry conditions∫
R
vt+1(ϕ,p∗)dF (ϕ|xt)− rt+1 = 0, and (15)∫
R
vt+1(ϕ,p∗)dG(ϕ)− kt+1 ≤ 0, with equality if Mt > 0 (16)

can be derived if µ0 and G are normal distributions, and the cost function is related to

a Cobb Douglas production technology. In this particular case, the 2T exit/entry con-

ditions, as well as the market clearing output price p∗ can be written as functions of

the exit-points x = (x0, ..., xT−1) and entry-masses M = (M0, ...,MT−1). Any solution

(x∗,M∗) to this system of equations thus constitutes a dynamic equilibrium.

To some extent, the equilibrium outcome will be affected by the assumed length of

the planning horizon. Since we consider a finite time horizon, the function vt(ϕ,p
∗) is

essentially a discounted sum of expected future profits. The value of a firm at time t will

therefore depend on the number of time periods which are still to come. At the beginning

7A proof for the existence of a dynamic equilibrium is provided in the Appendix A.1. More details
regarding the computation of an equilibrium can be found in Appendix A.2.
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firms take the industry development over the whole time span into consideration, while

they base their entry/exit decision on just a few upcoming periods at the end of compe-

tition. An extension of the time horizon by one period may thus have a strong impact

on the value of a firm in the final periods. As firms discount future profits by the factor

β < 1, however, the impact on a firm’s value in the first periods is less harsh and will

possibly diminish in the long run. For this reason, we expect results to stabilise if the time

horizon tends to infinity. But the numeric effort to calculate an equilibrium in this case

will be enormous.

3 Structural change in the Western German dairy

sector

3.1 Stylised facts: agricultural policy and development of farm

size distribution

In 1984, the EU introduced the milk quota system, which limited farms’ milk production

and used intervention prices as a price minimum. In the initial years of the program,

the production right was not transferable. This restriction has been relaxed over time,

from family transfers and regional but rental transfers to official sales within auctions

for Eastern and Western German Federal States separately. Within the 2003 Common

Agricultural Policy (CAP) reform, the de-coupling of direct payments from the produc-

tion levels and the further reduction of price regulation induced higher price volatility

and lowered the certainty level of expectations. More recently, within the 2008 check of

the CAP reform, further stages of the milk market reform (decided in 2003) have been

implemented, which might have contributed to the falling milk prices at that time (cf.

Figure 7 in Appendix A.3). Also, it was finally decided to end the milk quota scheme in

2015. Hence, farms were exposed to further pressure to adjust.

A frequently used measure for structural change is the development of the farm size

distribution over time. Basically, two variables may be utilised as a proxy for farm size:

the number of cows or the milk output per farm. Here, we start with the number of cows

per farm: in Western Germany, the number of dairy farms declined from 1,216,700 in 1960

to 90,200 in 2010 (Statistisches Bundesamt), while the average farm size increased, viz.

from an average of 5 cows per farm in 1960 to 43 cows per farm in 2010 (Statistisches

Bundesamt), with considerable increases in farm productivity at the same time. The av-

erage milk yield per cow increased from 3.6 tons per cow and year in 1964 to 6.9 in 2009.
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Figure 1: Dairy Farm Size Distribution western Germany 1960-2010
Source: Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten 1960-2011

The rather strong consolidation process goes along with an altered farm size distribution

as visualised in Figure 1. While the share of the small farms (less than 10 cows per farm)

sharply declined over time, the medium (10-49 cows) and large (more than 50 cows) in-

creased in numbers and shares of total number of dairy farms. The share of the large and

very large farms particularly increased in more recent years (starting in the mid 1990s).

Figure 2 illustrates changes in the farm size distribution between the years 2000 and

2008 based on data from the Farm Accountancy Data Network (FADN) for both mea-

sures: number of cows (left-hand side) and milk output (right-hand side). Here we refer

to a kernel density estimation (KDE) of the distribution in natural logarithms based on

specialised dairy farms only. We opted for a Gaussian kernel. The right-shift of both

distributions confirms the growth in average farm size and the industry’s consolidation

process, also for the shorter time period. Since the market has been influenced by the milk

quota for more than 30 years, this begs the following questions: To what extent has the

development been provoked by the quota, and how would the distribution look without

quota limitations?

The empirical literature does not yet provide a clear answer on how the quota affected

structural change, or what will happen in the nearer future. Some argue that structural

change in the dairy sector might be accelerated after the quota removal, where this effect

is expected to be stronger the tighter the transfer rules of the milk quota in the quota

period are (Bailey, 2002). Nevertheless, even in EU Member States where the quota trade

scheme is rather well organised, e.g. the United Kingdom (UK), the milk quota scheme

could have been proven to foster inefficient production structures (Colman, 2000; Colman

et al., 2002). Moreover, as Oskam and Speijers (1992) show, considerable increases in the

capital costs of farms that bought or leased quota might hinder investments in efficient

13
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Figure 2: Dairy farm size distribution in 2000 and 2008 for Western Germany
Source: EU-FADN-DG AGRI 1997-2011

production structure. Richards (1995) and Richards and Jeffrey (1997) even find evidence

that the milk quota scheme reduces the investment rate of dairy farms in Canada, hinder-

ing farm growth and necessary adaptations of technical progress. Thus, it is undisputed

that even tradable quotas have an impact on the dairy production industry dynamics and

the removal will influence farmers’ decision-making.

In what follows, we will examine the effect in greater detail, and calculate and com-

pare the dynamic equilibrium for two scenarios: the equilibrium of a capacity-constrained

sector, that is, with production quotas, and an unconstrained sector, which reflects a po-

tential situation after the production quota scheme. For this, we first need to calibrate

the benchmark dairy production sector to German data as a base.

3.2 Model calibration

We calibrate our model to the Western German dairy sector in the year 2003. At this

point the milk quota was already tradable among all western farms. The data is provided

by the EU-FADN-DG AGRI 1997-2011, and the sample contains information on 1,500

specialised dairy farms between 1997 and 2011.

Cost function

We assume a single output and multiple input production technology. Output q is raw

milk and assumed to be Cobb-Douglas in inputs n1, ..., nk with a stochastic productivity

component denoted by ϕ:

q = c nα1
1 . . . nαkk eϕ. (17)

We directly use the estimates of Petrick and Kloss (2012) to calibrate the production

function for western German dairy farmers with the inputs labour, land, working capital,

14
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Figure 3: Distribution of dairy cows (left) and milk output (right) across farms in 2003
with adjusted normal distributions
Source: EU-FADN-DG AGRI 1997-2011

fixed capital and number of cows. Based on those results we derive the cost function as

follows:

c(ϕ, q) = h

(
q

exp(ϕ)

) 1
α

, (18)

with constant term h and α =
∑
αj. For a given productivity ϕ the optimal firm-specific

output level in period t is thus given by

q∗(ϕ, pt) =
(α pt
h

) α
1−α

e
ϕ

1−α . (19)

This functional form implies that the optimal output level q∗ follows a log-normal distri-

bution if ϕ is normally distributed, that is

µϕt = N(νϕ, σ
2
ϕ) ⇔ µqt = LN(νq, σ

2
q ). (20)

Starting distribution of productivity levels across farms

Based on this relationship we determine a starting distribution µϕ0 using the farm-level

output distribution in 2003. Figures 3 and 4 suggest that milk output is close to being

log-normally distributed across farms. To fit a log-normal distribution µq0 to the observed

firm-specific output values qit (for farms i = 1, ..., n), we refer to equation (19), where

the cost function parameter h is adjusted such that the corresponding distribution of

productivity values ϕit is centered-normal: µϕ0 = N(0, σ2
ϕ).

Distribution of new farms

The nature of the farm accountancy data does not allow us to clearly define new firms.

Therefore, we assume that the group of new firms also included investing firms (cf. also

15



5
10

15
Q

ua
nt

ile
s 

of
 L

og
 m

ilk
 o

ut
pu

t p
er

 fa
rm

 (
in

 k
g)

 in
 2

00
3

10 12 14 16
Quantiles of Normal Distribution

5
10

15
Q

ua
nt

ile
s 

of
 L

og
 m

ilk
 o

ut
pu

t p
er

 fa
rm

 (
in

 k
g)

 in
 2

00
3

10 11 13 14 15               12
Quantiles of Normal Distribution

Figure 4: Quantiles of a normal distribution plotted against the quantiles of farms’ log
milk output (in kg) in 2003. The left side contains all farms while the right side displays
just new farms, ie., those who have increased their number of cows by at least 20%.
Source: EU-FADN-DG AGRI 1997-2011

section 2.2), and select those farms from the sample that have increased their number

of cows by at least 20% from 2002 until 2003. These farms’ milk output distribution is

similarly approximated, that is, by a log-normal one (see right side of Figure 4). In a

second step, the output distribution is used for the normal distribution of productivity

levels: G = N(νg, σ
2
g)

Demand function

The demand function for milk is supposed to have constant price elasticity η = −y′(p) p
y(p)

.

Generally speaking, an isoelastic demand function is given by y(p) = b p−η, or the cor-

responding inverse demand function D(Q) =
(
Q
b

)− 1
η . Here, we refer to Thiele (2008) to

calibrate the demand for dairy products in Germany; this author reports a price elasticity

of about η = 1.00. Parameter b will be adjusted such that the market clearing output

price matches the observed one in 2003. Given that the average milk price is p2003 = 0.32

e/kg and the observed distribution of milk output denoted by µq2003, the 2003 calibrated

demand function is given by

p2003 =

(
1

b

∫ ∞
0

y dµq2003(y)

)− 1
η

. (21)

Productivity process

According to the formal model, a farm’s productivity is assumed to follow an AR(1)-

process:

ϕit = ρ ϕi,t−1 + εit, with ρ ∈ (0, 1] and εit ∼ N(νε, σ
2
ε). (22)

As the output levels are optimally chosen with respect to a farm’s productivity level ϕit,
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the process parameter ρ may be estimated by means of the milk output per farm. Let qit

denote the milk yield per farm i and year t; we normalise the values by the average farm

level production over time q̄t = 1
n

∑n
j=1 qjt as follows:

q̃it =
qit
q̄t

=
exp

(
ϕit

1−α

)
1
n

∑n
j=1 exp

( ϕjt
1−α

) . (23)

For simplicity we let ēt = 1
n

∑n
j=1 exp

( ϕjt
1−α

)
. Taking logs on both sides yields

log(q̃it) = log

[
exp

(
ϕit

1−α

)
ēt

]
=

ϕit
1− α

− log(ēt)

=
ρϕi,t−1 + εit

1− α
− log(ēt) + ρ log(ēt−1)− ρ log(ēt−1)

= ρ log(ēt−1)− log(ēt) + ρ

[
ϕi,t−1

1− α
− log(ēt−1)

]
+

εit
1− α

= ã+ ρ log(q̃i,t−1) + ε̃it,

with ε̃it ∼ N
(

0, σ2
ε

(1−α)2

)
. We apply this log-log specification to the FADN data and

estimate the parameters ã, ρ and σ2
ε using a dynamic panel estimator in line with Arellano

and Bond (1991).8

Fixed costs

We infer the fixed costs cf from the development of the output distribution over time. For

simplicity we presume the costs to be constant over incumbents. Given that the transition

from µqt to µqt+1 is induced by passing the exit-point xt, our idea to estimate fixed costs

is to estimate the critical productivity level as a threshold. By definition (11), each firm

at the critical productivity level ϕ = xt must be indifferent between staying in or leaving

the industry. Fixed costs are derived such that the continuation value of the indifferent

firms exactly offsets the liquidation value, which is supposed to be zero.

First, we need to calibrate the critical threshold level. Given that our base year is

2002, we log-normally approximate the distribution of milk output in 2002, denoted by

µq2002. Accordingly, the 2002 productivity levels follow a normal distribution µϕ2002. Second,

according to (13) and (14) the distribution of productivity levels across farms is uniquely

determined by the current distribution, the stochastic productivity process, and entry/exit

8The dynamic model applied to panel data causes the lagged dependent to be endogenous because
of unobserved farm-specific effects. Accordingly, we use the second- and higher-order lags of the output
variables as instruments and estimate the model by the generalized method of moments (cf. Bond (2002)
for a similar model).
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of farms. If µϕ2002 = N(ν, σ2), then µϕ2003 is given by the density function

mϕ
2003(z) =

1√
2π(σ2

ε + σ2ρ2)
e
− (z−(ρν+νε))

2

2(σ2ε+σ
2ρ2) (1− F̂ (x2002)) +

M2002√
2πσ2

g

e
− (z−νg)2

2σ2g , (24)

with F̂ being the density function of a N
(
σ2ρ(z−νε)+σ2

εν
σ2
ε+σ2ρ2

, σ2
εσ

2

σ2
ε+σ2ρ2

)
random variable. The

function constitutes a probability density as long as the mass of entry equals the mass of

exit. Presuming that M2002 = µϕ2002((−∞, x2002)), the density function depends solely on

the critical exit threshold x2002 for the given parameters.

Third, we will estimate the critical threshold level x2002 using the method of maximum

likelihood (ML). To set up the likelihood function we use the observed and independent

farm-specific output values in 2003 (q1,2003, ..., qn,2003) and the corresponding productivity

levels ϕ1,2003, ..., ϕn,2003 based on equation (19):

L(x2002) =
n∏
k=1

mϕ
2003(ϕk,2003;x2002). (25)

The unknown threshold level is estimated by maximising the likelihood function in (25).

The continuation value of a firm with productivity level ϕ = x2002 must coincide with

its liquidation value. If no tradable quota exists, firms giving up production will not be

able to generate any positive liquidation value. That is why rt+1 = 0 must hold for all

periods. Further, according to (11) the following equality must hold:∫
R
v2003(ϕ′,p)dF (ϕ′|x2002) = 0. (26)

Since the continuation value contains the expected future profits, which in turn include

fixed costs and depend on future output prices, we choose the level of fixed costs cf such

that (26) is satisfied. For simplicity, we assume constant prices.

Entry costs

Given that the data contains wide range of investment levels, determining a single value

for entry costs remains a challenge. The entry costs differ by scenario. In a situation with

free access, that is, no entry costs, and assuming a constant price vector p, the expected

value of a new firm is about 14 times the fixed costs. To ensure that new firms truly have

an incentive to invest and enter the industry, the constant entry costs ce should be smaller

than this upper boundary. Here we choose ce = 8 cf .

If the industry is constrained by a quota, new firms must buy production rights in

addition to the constant entry costs. Here we suppose the production rights to be dis-
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tributed among all active farms. As a result, the quota costs coincide with the revenue

that farms withdrawing from production can gain. Referring to the theoretical model, the

total industry mass µt(R) is determined by the balance of farms leaving and entering the

industry. For this reason, we define the quota costs as an upward-sloping function of the

industry mass

k(µt(R)) =
cf
2

exp
[
100 (µt(R)− 1)

]
. (27)

The function k rises dramatically if the mass of new farms outweighs the exiting ones,

and the total industry mass exceeds one. At this point, entry is no longer profitable,

and hence µt(R) = 1 serves as a rough upper boundary to the industry’s size. Under

production quotas, entry costs are composed of the quota costs and the constant part ce,

that is, kt = ce+k(µt(R)). The exit premium rt, which is the value that firms receive while

selling their production rights in case of exiting the sector, equals (27). By this definition

we guarantee that the quota confines the total size of the industry.

3.3 Findings

Functional form Specified parameters

Demand function D(Q) =
(
Q
b

)− 1
η

b = 81, 470; η = 1.00

Cost function c(ϕ, q) = h
(

q
exp(ϕ)

) 1
α

h = 0.0376; α = 0.86

Productivity process ϕt+1 = ρ ϕt + εt+1, with εt+1 ∼ N(νε, σ2
ε) ρ = 0.99; νε = −0.0027; σ2

ε = 0.0001

Starting distribution µ0 = N(ν0, σ2
0) ν0 = 0.0000; σ2

0 = 0.0085

Distribution of new firms G = N(νg , σ2
g) νg = 0.0150; σ2

g = 0.0105

Discount factor – β = 0.9

Fixed costs – cf = 3, 938 e

Entry costs (free access) – ce = 31, 500 e

Table 1: Utilized functional forms and estimated parameters
Source: Estimations based on Farm Accountancy Data Network

Table 1 summarises the calibrated parameter values. The estimated stochastic produc-

tivity process is almost a random walk, with ρ = 0.99 being rather close to one. This value,

together with the rather low volatility σ2
ε = 0.0001, indicates that a farm’s productivity is

rather stable over time. A farm with productivity ϕt = ϕ̄ in period t will likely achieve a

similar productivity level in the consecutive period t+1. Here, one time period represents

one year.

The fixed costs value cf captures all non-variable costs in the production process during

one year. This may include, for example, fixed insurance rates, expenditures for rents, as
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well as depreciation costs of machinery that result from previous investments. Considering

this, the specified fixed costs seem to be on a relatively low level. Still, every farm not able

to cover this absolute value with their production profits is forced to leave the industry.

One should keep in mind that those fixed costs are also paid by new farms once they have

entered the industry. The constant entry costs ce, thus comprise all additional investments

that are obligatory to set up production but are not covered by the fixed costs.

Based on the calibration values as given in Table 1, we now assess the effect of a

tradable milk quota on entry and exit of farms by comparing the dynamic equilibria of

a scenario with quota (constrained case) to the one without quota (unconstrained case).

Given the numerical efforts needed to derive those equilibria, we restrict the planning

horizon to T = 15 time periods.

Table 2 contains the equilibrium values for the exit-points x∗t and entry-masses M∗
t ,

which were found numerically by solving the corresponding system of exit/entry equations

in (15) and (16). The exit rate describes the share (in percentage) of farms leaving the

industry in relation to the total industry mass µt(R). If no entry occurs, this figure illus-

trates the shrinkage of the industry in terms of production units. The rather low volatility

of output prices over time is a result of the absence of aggregate demand shocks, which

we do not consider in our analysis. To make the minimum productivity threshold for stay-

ing active more comprehensible to the reader, we have translated the productivity values

back into their respective output levels. Hence, the column labelled as ln(q∗x) describes

the log milk output that a farm with productivity level ϕt = x∗t expects to produce in the

forthcoming period.

In a scenario without a milk quota we observe that all new farms enter the industry in

the first period. Hence, farms have no incentive to postpone investment when the access

to production capacity is unrestricted.9 This changes, however, if a quota is introduced,

and investing into new farms requires disinvestment by withdrawing farms. In this case,

entry takes place not just in the first but during the first seven periods. Furthermore, the

mass of entry is bounded (as the total size of the industry is) by construction. As long

as farms are entering the industry, the mass of new farms indeed matches the amount of

exiting ones.

The continuously lower total industry mass µt(R) in the constrained scenario leads to

a smaller aggregate milk output, and thus brings on higher output prices p∗t . However,

irrespective of the higher output prices, the exit-points in the first periods are higher un-

der a quota regime, that is, the critical productivity threshold for staying active increases

9Recall that we do not account for limited availability of agricultural land. In practice, the entry of
new farms will be confined by this production factor.
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Scenario without milk quota Scenario with milk quota
Period Exit Exit Quota
t x∗t M∗t µt(R) rate p∗t ln(q∗x) x∗t M∗t µt(R) rate p∗t ln(q∗x) costs
0 -0.079 0.85 1.00 19.3 32.0 11.12 -0.035 0.37 1.00 35.2 32.0 11.77 6.4
1 -0.081 0.00 1.66 11.6 29.2 11.13 -0.042 0.15 1.02 15.1 30.9 11.66 5.4
2 -0.082 0.00 1.46 4.7 29.3 11.14 -0.048 0.08 1.02 8.4 30.6 11.58 4.4
3 -0.082 0.00 1.40 4.2 29.4 11.15 -0.054 0.06 1.02 5.9 30.4 11.52 3.5
4 -0.082 0.00 1.34 3.9 29.5 11.16 -0.060 0.04 1.01 4.5 30.3 11.46 2.5
5 -0.082 0.00 1.29 3.8 29.5 11.17 -0.069 0.03 1.01 3.4 30.2 11.39 1.5
6 -0.081 0.00 1.24 3.7 29.6 11.19 -0.083 0.01 1.00 2.1 30.2 11.29 0.6
7 -0.080 0.00 1.19 3.6 29.6 11.21 -0.094 0.00 1.00 1.6 30.2 11.22 0.1
8 -0.079 0.00 1.15 3.7 29.7 11.23 -0.095 0.00 0.98 1.9 30.2 11.22 0.0
9 -0.078 0.00 1.10 3.6 29.7 11.25 -0.094 0.00 0.96 2.3 30.2 11.24 0.0
10 -0.076 0.00 1.06 3.7 29.8 11.27 -0.091 0.00 0.94 2.5 30.3 11.26 0.0
11 -0.074 0.00 1.02 3.8 29.9 11.30 -0.089 0.00 0.91 2.7 30.3 11.29 0.0
12 -0.071 0.00 0.99 3.9 29.9 11.34 -0.085 0.00 0.89 2.8 30.4 11.33 0.0
13 -0.066 0.00 0.95 4.2 30.0 11.38 -0.080 0.00 0.86 3.0 30.4 11.37 0.0
14 -0.060 0.00 0.91 4.8 30.1 11.44 -0.073 0.00 0.83 3.5 30.5 11.44 0.0
15 - - 0.86 30.1 - - - 0.79 30.5 - -

The quota costs and output prices p∗t are displayed in ct/kg. The exit rate is the share of farms leaving the industry. The
column labelled as ln(q∗x) describes the log milk output that a farm with productivity level ϕt = x∗t expects to produce in
the next period.

Table 2: Dynamic equilibrium outcome for the calibration shown in Table 1
Source: Authors’ own calculations

compared to a situation without constraints (no quota scenario). As a consequence, we

observe higher exit rates under the quota scenario. Apparently, even relatively productive

farms are better off selling their quota capacity instead of pursuing production. We infer

that the liquidation value outweighs the additional variable profits generated by higher

output prices at the beginning of the planning horizon.

The finding that a milk quota regime speeds up structural change, however, holds only

in the first periods after its implementation. The exit values x∗t are smaller compared with

the unconstrained scenario as long as entering farms create a positive demand for quota.

The effect reverses as time proceeds. When the farms’ incentive to invest diminishes in

later periods, the quota value declines and the constrained exit-points become smaller

than the unconstrained ones. This implies that less productive farms particularly benefit

from higher output prices in the long run.

The output levels belonging to the optimal exit-points show a similar behaviour. While

the constrained values ln(q∗x) exceed the unconstrained ones at the beginning, they con-

verge at the end of the planning horizon. Since farms act as price-takers in the output

market, their optimal output is determined by their productivity level as well as by the

price. This explains why higher milk prices under the quota regime lead to a higher farm-

specific milk output. Marginal producers, that is, farms, which are indifferent between

staying in or leaving the industry, produce the same amount of output in both scenarios,

though at lower productivity levels in the constrained case.

The development of the industry structure µϕt resulting from farms’ entry and exit
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Figure 5: Distribution of productivity levels ϕ after 1, 5, 10 and 15 time periods
Source: Authors’ own calculations

decisions, is depicted in Figure 5. We compare the starting distribution (dashed line)

with the distribution of productivity levels across farms after 1,5,10, and 15 time periods,

respectively, for both scenarios. The area below the curves equals the value µt(R) given

in Table 2. Both the constrained and the unconstrained distribution shift to the right in

the course of time, implying that the average productivity level increases. Furthermore,

the findings reveal that the industry shrinks over time in both scenarios, and the total

size in terms of µt(R) is always larger in the unconstrained case. According to (8) the

aggregate industry output Qs is defined as the integral of q∗(ϕ, p) with respect to the

measure µϕ. The shape of the displayed density function µϕt in Figure 5 thus provides an

intuitive explanation of why the aggregate output is larger in the unconstrained case and

the output price is lower than in the constrained scenario.

Figure 6 shows the distribution of milk output across farms that is induced by the

underlying industry structure µϕt . In contrast to Figure 5, the density functions here con-

stitute probability measures and can be directly compared to the empirical densities in

Figure 2. The frequency distributions of output levels are derived in three steps: First,

we simulate a sequence of random numbers distributed according to the normalised mea-

sure
µϕt
µt(R)

. Afterwards, we calculate the milk output referring to those randomly-chosen

productivity values, taking into account that the firm-specific output is also affected by
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Figure 6: Distribution of output levels log(q) after 1, 5, 10 and 15 time periods
Source: Authors’ own calculations

price. Finally, we apply a kernel density estimation to the log-output values.

Somewhat surprisingly, the unconstrained output distribution is located left of the

starting distribution after the first period. This is because the optimal farm-specific out-

put depends on the price, and the dropping milk price in the first period causes all farms

to produce less output. In later periods, however, both the constrained and the uncon-

strained output distribution shift to the right. Note that the upper tails of the density

functions spread out. This mimics the empirical distribution in Figure 2 and implies that

the share of farms with a high milk yield grows over time. Figure 6 illustrates, moreover,

that the constrained density function is always located to the right of the unconstrained

one, meaning that the ratio of farms producing a high milk output is always bigger in

the constrained case compared to the unconstrained situation. This indicates that the

industry is more concentrated under a quota regime.

4 Conclusions

This article has examined how a constrained sectoral production capacity in the agri-

cultural industry affects farms’ entry and exit decisions. We have presented a method
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to incorporate tradable production quotas into a dynamic stochastic framework with en-

dogenous entry and exit of firms. Our model considers firm-specific uncertainty. Due to

the large number of heterogeneous firms in the industry uncertainty washes out on the

aggregate level. As a result, the industry structure and output price follow a deterministic

pattern.

In contrast to the majority of comparable models, we conduct our analysis in a finite

time framework. The common approach for analysing industry dynamics is to derive a

stationary equilibrium. However, the concept of a stationary equilibrium does not seem

capable of capturing the dynamics of an industry. In the agricultural industry, for exam-

ple, we found a permanent change of the farm size distribution over recent decades, and

the question arises whether a stationary equilibrium will be reached at all. The proposed

finite time framework is more flexible since it allows us to trace changes of the produc-

tivity distribution over time in great detail. This flexibility comes at the cost that the

equilibrium outcome depends on the length of the planning horizon. In particular, the

last periods of competition may be biased.

Our results have important implications for the economic appraisal of production quo-

tas. Quotas have not only been criticised for negative welfare effects due to price dis-

tortions. It has also been argued that the introduction of production quotas hinders

adjustment processes in an industry and thus retains inefficient production structures

(Colman, 2000). Our results demonstrate that this simple view of the effect of production

quotas needs to be qualified. We find that the establishment of a tradable milk quota

may lead to a higher exit rate of farms, at least as long as competitors seek to expand

their production capacity and create a high demand for quota. If the farms’ incentive to

invest declines, however, less productive farms benefit from higher output prices and stay

longer in the industry. Furthermore, the simulated output distributions imply that the

share of farms with high milk output is always larger if the industry is constrained by

a production quota. It should be noted that these findings are based on a set of specific

assumptions that were required to calibrate the model. A further robustness analysis is

needed to assess the sensitivity of the model outcome with respect to parameter changes.

The work presented here can be extended in several directions. First, the market for

tradable production quota could be modelled explicitly. Thus far, the entry costs have

been specified by an exogenous function of the industry size. Alternatively, one could

determine demand and supply functions for the quota as well as its equilibrium price

endogenously. Second, our model abstracts from output price stochasticity, which seems

unrealistic considering the volatility of milk markets. Aggregate uncertainty can be in-

troduced through demand shocks. This, however would generate real options effects and
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would complicate the firms’ decision problem considerably. Finally, it could be interest-

ing to apply our modelling approach to other production factors that are bounded at

the sector level and tradable amongst firms. An example of this is agricultural land, for

which supply is very inelastic. Although regional differences and soil quality play an im-

portant role in land markets, we conjecture that its impact on farm entry and exit may

be comparable to a quota regime.

A Appendix

A.1 Existence of a finite dynamic equilibrium

Lemma 1 summarises some basic properties of the optimal output q∗, which follow directly

from the first order condition (7) and the assumed structure of the cost function in (4),

(5). The implications for the period profits π are given in Lemma 2.

Lemma 1. (i) The function q∗(ϕ, p) is continuous and (strictly) monotonic increasing

in p and ϕ. (ii) For all ϕ ∈ R, we have q∗(ϕ, p) > 0 if p > 0 and q∗(ϕ, 0) = 0. (iii)

q(ϕ, p)→∞ if either p→ +∞ or ϕ→ +∞.

Lemma 2. (i) π is continuous in ϕ and p. (ii) π is strictly increasing in p, and if p > 0,

it is strictly increasing in ϕ. (iii) π(ϕ, p) → ∞ if either p → +∞ or ϕ → +∞. (iv)

π(ϕ, p)→ −cf if either p→ 0 or ϕ→ −∞.

A necessary condition for the existence of a finite dynamic equilibrium is the integrabil-

ity of q∗(ϕ, p) and π(ϕ, p) with respect to the relevant measures. If both functions are

integrable with respect to any Normal distribution, the properties in Lemma 2 translate

one-to-one to the value function vt(ϕ,p), and also to the continuation value

vCt (ϕ,p) =

∫
R
vt(ϕ

′,p) dF (ϕ′|ϕ). (A.1)

Hence, the continuation value is continuous and strictly increasing in ϕ. Furthermore, the

limits

lim
ϕ→+∞

vCt (ϕ,p) =∞ and lim
ϕ→−∞

vCt (ϕ,p) = −cf (A.2)

hold for every price vector p > 0.

Theorem 1 (Existence of a dynamic equilibrium). Let µ0, G be continuous distributions

with compact support, and both q∗ and π be integrable with respect to Normal distributions.

A dynamic equilibrium exists in the finite framework if D(0) =: pmax <∞.
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The additional assumptions made in Theorem 1 imply that all integrals, which will be

considered in the following proof, exist.

Proof. (Without capacity constraints)

We show the existence of a dynamic equilibrium in the case without capacity constraints

first. This implies rt = 0, kt = ce for all t, and

vt(ϕ,p) = π(ϕ, pt) + βmax

{
0,

∫
R
vt+1(ϕ′,p) dF (ϕ′|ϕ)

}
. (A.3)

The basic idea behind this proof is to apply Brouwer’s Fixed Point Theorem. The theorem

states that every continuous function, mapping a compact space into itself, has a fixed

point. Hence, we will define a continuous mapping and illustrate, in the first step, that a

fixed point of this mapping constitutes a dynamic equilibrium. In a second step, we will

specify a compact subset and show that the previously defined function maps this set into

itself.

Step I. By condition (i) of Definition 1, the equilibrium prices p∗t must clear the output

market in every single period, ie. the equality

pt = D(Qs(pt, µt)) = D

(∫
R
q∗(ϕ, pt)dµt(ϕ)

)
(A.4)

must be satisfied. The properties of D(Q) and q∗(ϕ, p) imply that for any given industry

structure µt a unique solution p∗t to (A.4) exists (Intermediate Value Theorem). Consider-

ing the industry dynamics (13), p∗t will be a continuous function of all previous exit-points

x0, ..., xt−1 and entry-masses M0, ...,Mt−1.10 Furthermore, the market clearing output price

p∗t is upward sloping in xj and downward sloping with respect to Mj (this holds for any

j ∈ {0, ..., t− 1}).
Now, we construct an operator T : R2T → R2T that maps a given vector (x,M) of

exit-points and entry-masses to another vector (x̃, M̃). For any vector (x,M) ∈ R2T ,

containing a number of exit-points xt and entry-masses Mt, we can derive the resulting

industry structures µt according to the industry dynamics (13). The market clearing out-

put prices p∗t are then determined by the equality (A.4). Given this output price vector

p∗, we can define the mapping T (x,M) = (x̃, M̃) by:

x̃t := inf

{
ϕ ∈ R :

∫
R
vt+1(ϕ′,p∗)dF (ϕ′|ϕ) ≥ 0

}
, (A.5)

M̃t := min
{
Mmax

t ,max
{

0 , vet+1(p∗)− ce +Mt

}}
. (A.6)

10Recall that µ0, F (.|ϕ) and G are all supposed to be continuous distributions
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The value Mmax
t determines an upper boundary to the entry-mass, which can possibly

arise in an equilibrium and will be specified later on. It is trivial that (A.5) coincides

with the exit-rule of our equilibrium definition, and equation (A.6) rephrases the entry

condition (iii). Hence, the values x̃t represent the critical productivity thresholds under the

price vector p∗. According to (A.2), the function vCt (ϕ,p) tends to infinity for ϕ→ +∞.

Therefore, the infimum in (A.5) does indeed exist for any output price vector. The solution

x̃t will be a continuous function of p∗ as the continuation value is continuous and strictly

increasing with respect to ϕ. It is evident that the same applies to the values M̃t. Hence,

the mapping T , which is a composition of continuous functions, must be continuous itself.

The way we have constructed T implies, moreover, that a fixed point of this mapping

describes an equilibrium.

Step II. In the remainder we will specify a compact subset S ⊂ R2T such that T (S) ⊆ S,

i.e. T maps S into itself. First, recall that the output prices, which may occur in an

equilibrium, are bounded by p∗t ∈ (0, pmax]. This allows us to determine lower boundaries

for the exit-points. We define the price vector pmax := (pmax, ..., pmax), which would for

instance arise in an empty industry. The corresponding solutions of the exit-rule with

respect to pmax determine the minimum attainable values xmint .

Next, we define the upper boundary Mmax
t for the entry-masses that can materialize

in an equilibrium. Note first, that the expected value of entrants can be written as

vet (p) =
T∑
j=t

βj−1

∫
R
π(ϕ, pj) dµ̄j(ϕ), (A.7)

with µ̄t ≡ G and µ̄j being the distribution of a firm’s productivity in period j. These

measures depend implicitly on the firm’s optimal exit decisions (with respect to any given

price vector p), and the total mass µj(R) displays the probability of still being active in

period j. In an equilibrium, the firm’s exit policy must coincide exactly with the exit-

points xt, ..., xT−1.

Now, we turn this around and define a firm’s productivity distribution in period j as

an explicit function of given exit-points xt, ..., xj−1. The distribution is denoted by the

measure

λj((−∞, ϕ′]) =

∫ ∞
xt

· · ·
∫ ∞
xj−1

F (ϕ′|ϕj−1) dF (ϕj−1|ϕj−2) · · · dF (ϕt+1|ϕt)dG(ϕt). (A.8)

This implies λj = µ̄j whenever the exit-points xt, ..., xj−1 represent an optimal exit policy

(as they do, for instance, in an equilibrium).

For any given vector of exit-points x = (x0, ..., xT−1) there exists an entry-mass M0
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such that

ve1(p∗,x) =
T∑
j=1

βj−1

∫
R
π(ϕ, p∗j) dλj(ϕ) ≤ ce. (A.9)

The reason for this is simply that all output prices p∗1, ..., p
∗
T tend to zero if the exit

points are fixed and M0 → ∞. Hence, we define M̄x := inf {M0 ≥ 0 : ve1(p∗,x) ≤ ce} as

the smallest entry-mass satisfying (A.9). Furthermore, λj((−∞, ϕ′])→ 0 if any exit-point

xk →∞ and k ∈ {t, ..., j − 1}. Therefore, we can find exit values x̄j−1 such that∫
R
π(ϕ, pmax) dλj(ϕ) ≤ ce

T
(A.10)

for any xj−1 ≥ x̄j−1.

Recall that the market clearing output price in period t is a continuous function of

all previous exit-points and entry-masses. Hence, the function ve1(p∗,x) is also continuous

with respect to M0 and x. On the compact subset X := [xmin0 , x̄0] × · · · × [xminT−1, x̄T−1],

there must be a maximum value Mmax
0 = supx∈X M̄x <∞ that satisfies the inequality in

(A.9) for every exit vector x ∈ [xmin0 ,∞) × · · · × [xminT−1,∞). The values Mmax
1 , ...,Mmax

T−1

are determined by exactly the same procedure.

To determine maximum attainable exit values xmaxt , we need to calculate the mini-

mum output prices first. It is clear that the output prices are minimised if the aggre-

gate output is maximised. This is the case if no exit takes place and the maximum

amount of firms Mmax
t enters the industry in each period t. Hence, the entry/exit-vector

(x,M) = (−∞, ...,−∞,Mmax
0 , ...,Mmax

T−1 ) yields the minimum justifiable output prices

(pmin1 , ..., pminT ), which are given by market clearance (A.4). By taking the minimum over

all t = 1, ..., T we can also determine an absolute minimum price pmin > 0 that serves as a

lower boundary to all market clearing output prices. Solving the exit-rule for the constant

price vector pmin = (pmin, ..., pmin) thus yields the maximum possible exit values xmaxt .

With all those exit and entry values at hand, we define the subset S ⊂ R2T by the

cartesian product

S := [xmin0 , xmax0 ]× · · · × [xminT−1, x
max
T−1]× [0,Mmax

0 ]× · · · × [0,Mmax
T−1 ]. (A.11)

Obviously, this set is compact and mapped into itself by the operator T . If we take any

(x,M) ∈ S, the resulting output prices p∗t will be in [pmin, pmax]. Due to the construction

of S and the monotonicity of the continuation value vCt (ϕ,p), which was mentioned right

at the beginning of the proof, the resulting exit-points x̃t must lie inside the interval

[xmint , xmaxt ]. Furthermore, the calculated entry values M̃t are surely between 0 and Mmax
t .

This implies (x̃, M̃) ∈ S, and we have indeed T (S) ⊆ S.
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Summing up, we have argued that T : S → S is a continuous mapping on a compact

space. In compliance with Brouwer’s Theorem this mapping possesses a fixed point. The

fixed point essentially represents a finite dynamic equilibrium and, thus, the theorem is

proven.

Proof. (With capacity constraints)

Now, we turn to the scenario where the total production capacity is limited to the sector

level, and show the existence of a dynamic equilibrium in this case. The proof is carried

out in the same fashion as the previous one. But, we request that kt = ce + k(µt(R)) and

rt = k(µt(R)), with k(x) being an upward sloping continuous function satisfying k(0) = 0

and limx→∞ k(x) = ∞. Let the vector r = (r1, ..., rT ) comprise the exit premiums. The

value function thus alters into

vt(ϕ,p, r) = π(ϕ, pt) + βmax

{
rt+1,

∫
R
vt+1(ϕ′,p, r) dF (ϕ′|ϕ)

}
. (A.12)

Note, that the continuity and monotonicity properties with respect to ϕ and p remain

unchanged. Moreover, the firm’s value at t increases with respect to all subsequent exit

premiums rt+1, ..., rT .

Step I. We construct a continuous mapping T : R2T → R2T . For any entry/exit-vector

(x,M) the industry structures µt and market clearing output prices p∗t are derived as

before. This time, however, we also calculate the capacity values kt and rt based on µt(R).

The operator T (x,M) = (x̃, M̃) is then determined by the exit/entry-rules

x̃t := inf

{
ϕ ∈ R :

∫
R
vt+1(ϕ′,p∗, r) dF (ϕ′|ϕ) ≥ rt+1

}
(A.13)

M̃t := min
{
Mmax

t , max
{

0 , vet+1(p∗, r)− kt+1 +Mt

}}
(A.14)

The constant Mmax
t is the maximum amount of firms that will possibly enter the industry

by the end of period t. The exact value Mmax
t will be specified later on. Recall that T

is again a continuous mapping, and the dynamic equilibrium is characterized as a fixed

point of T .

Step II. The challenge is once more to specify a compact subset S ⊂ R2T such that

T (S) ⊆ S. Utilizing the constant price vector pmax allows us to compute a Mmax
t such

that

vet+1(pmax, r) =

∫
R
vt+1(ϕ,pmax, r) dG(ϕ) ≤ ce + k(Mmax

t ). (A.15)
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Here, we presume that new firms enter an empty industry, and rj = k(Mmax
t ) for all

j = 1, ..., T . Firms having entered the industry in period t and paid capacity costs k(Mmax
t )

can, thus, recapture the same (discounted) value as exit premium in prospective periods.

The discount factor β < 1 guarantees that a solution to equation (A.15) exists. Because

vet (p, r) ≥ vet+1(p, r) for any constant vectors p, r ≥ 0, we will have Mmax
t−1 ≥Mmax

t .

By the same approach as in the unconstrained case, we compute minimum justifiable

output prices with the entry/exit-vector (x,M) = (−∞, ...,−∞,Mmax
0 , ...,Mmax

T−1 ). The

minimum of the market clearing output prices constitutes the lower boundary pmin. We

can also determine an upper boundary for the exit premium by

rmax = k

(
T∑
j=1

Mmax
j

)
. (A.16)

This implies minimum and maximum values for the exit-points by

xmint := inf

{
ϕ ∈ R :

∫
R
vt+1(ϕ′,pmax, rmax) dF (ϕ′|ϕ) ≥ 0

}
, (A.17)

xmaxt := inf

{
ϕ ∈ R :

∫
R
vt+1(ϕ′,pmin,0) dF (ϕ′|ϕ) ≥ rmax

}
. (A.18)

The compact subset S ⊆ R2T is set up in the same way as in the unconstrained proof:

S := [xmin0 , xmax0 ]× · · · × [xminT−1, x
max
T−1]× [0,Mmax

0 ]× · · · × [0,Mmax
T−1 ]. (A.19)

For any entry/exit-vector (x,M) ∈ S, the resulting output prices p∗t are in [pmin, pmax],

and the exit premium satisfies rt ∈ [0, rmax]. Consequently, the exit points x̃t, which are

related to p and r, will lie inside the interval [xmint , xmaxt ]. Due to the definition of M̃t,

the vector (x̃, M̃) = T (x,M) will indeed be an element of the set S. Hence, we have

T : S → S, and can apply Brouwer’s Fixed Point Theorem to conclude that a finite

dynamic equilibrium exists in the constrained case.

A.2 Derivation of model solutions

In the following we will illustrate how the problem of finding a dynamic equilibrium

reduces to a system of equations that needs to be solved simultaneously with respect to

x∗ and M∗. The structure of the industry at the beginning of competition µ0 is supposed

to be known. According to the industry dynamics (13), the structure at time t depends

on the whole history of exit/entry decisions made by the firms up to this point. This
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means that distribution µt is uniquely determined by the starting distribution µ0 and all

previous exit-points x0, ..., xt−1, and entry-masses M0, ...,Mt−1.

Under certain conditions an explicit formulation for the measure µt can be derived.

If both µ0 = N(ν0, σ
2
0) and G = N(νg, σ

2
g) are Normal distributions, for instance, the

industry structure in period t is given by the density function

mt(z) = φ

(
z

∣∣∣∣ ν0ρ
t + νε

t−1∑
j=0

ρj , σ2
0ρ

2t + σ2
ε

t−1∑
j=0

ρ2j

)
F̂t


−x0

...

−xt−1



+
t∑

k=1

Mk−1 φ

(
z

∣∣∣∣ νgρt−k + νε

t−k−1∑
j=0

ρj , σ2
gρ

2(t−k) + σ2
ε

t−k−1∑
j=0

ρ2j

)
F̂t−k


−xk

...

−xt−1

 .

(A.20)

Here, the function φ(z|ν, σ2) denotes the pdf of a Normal distribution with mean ν and

variance σ2. The function F̂t is the cdf of a t−dim Normal distribution N(λ,Σ) that is

subject to

Σ−1 =



σ2
0ρ

2+σ2
ε

σ2
εσ

2
0
− ρ
σ2
ε

0 · · · 0

− ρ
σ2
ε

ρ2+1
σ2
ε
− ρ
σ2
ε
· · · 0

...
. . . . . . . . .

...

0 · · · − ρ
σ2
ε

ρ2+1
σ2
ε
− ρ
σ2
ε

0 · · · 0 − ρ
σ2
ε

ρ2+1
σ2
ε


and Σ−1λ =



σ2
0νερ−σ2

εν0
σ2
0σ

2
ε

(ρ−1)νε
σ2
ε
...

(ρ−1)νε
σ2
ε

(ρ−1)νε−ρz
σ2
ε


. (A.21)

In the same manner, each F̂t−k constitutes the cdf of a (t− k)−dim Normal distribution.

The variables ν0, σ
2
0 in (A.21) need to be replaced by νg and σ2

g , however.

Due to condition (i), the equilibrium output price in period t is implicitly defined by

pt = D(Qs(pt, µt)). (A.22)

The properties of the demand function D and the aggregate industry output Qs ensure

that for any given industry structure µt a unique solution p∗t > 0 to (A.22) exists. There-

fore, the equilibrium output price is a function of µt, and it may be expressed in terms of

p∗t = st(x0, ..., xt−1,M0, ...,Mt−1). If µ0 represents a continuous measure, st : R2t → R+ is

a continuously differentiable function, and the partial derivatives satisfy

∂st
∂xj
≥ 0,

∂st
∂Mj

≤ 0 ∀j = 0, ..., t− 1. (A.23)
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In general, equation (A.22) defines the function st(·) only implicitly. When we apply

the model in section 3, we refer to an isoelastic demand function D(Q) =
(
Q
b

)− 1
η and a

Cobb Douglas cost function c(ϕ, q) = h
(

q
exp(ϕ)

) 1
α

with constants h > 0 and α ∈ (0, 1).

Those functional forms, in combination with the normality assumptions on µ0 and G,

enable us to deduce an explicit formulation for the equilibrium output price by hand.

As firms are supposed to be price-takers, their optimal output under those assumptions

is q∗(ϕ, pt) =
(
α pt
h

) α
1−α exp

(
ϕ

1−α

)
. Hence, the aggregate industry output is given by

Qs(pt, µt) =

∫
R
q∗(ϕ, pt) dµt(ϕ) (A.24)

=
(α pt
h

) α
1−α
∫ ∞
−∞

e
z

1−α mt(z) dz. (A.25)

In an equilibrium the output price clears the market, i.e., the equality p∗t = D(Qs(p∗t , µt))

must hold. Keeping this in mind we can derive the equilibrium price

p∗t =

[
1

b

(α
h

) α
1−α
∫ ∞
−∞

e
z

1−α mt(z) dz

] 1−α
ηα−η−α

(A.26)

=: st (x0, ..., xt−1,M0, ...,Mt−1) , (A.27)

which is indeed a function of all previous exit-points and entry-masses.

The equilibrium values for all xt and Mt are determined by the exit and entry condi-

tions. In each period t = 0, ..., T − 1 the following pair of equations has to be satisfied∫
R
vt+1(ϕ′,p∗)dF (ϕ′|xt)− rt+1 = 0 (A.28)∫
R
vt+1(ϕ′,p∗)dG(ϕ′)− kt+1 ≤ 0, with equality if Mt > 0. (A.29)

Since we consider a finite time horizon, the value function vt+1(ϕ′,p∗) is essentially a

discounted sum of expected future profits. The final exit condition, which must hold in a

dynamic equilibrium, is therefore∫
R
π(ϕ′, p∗T ) dF (ϕ′|xT−1)− rT = 0. (A.30)

Obviously, the left side may be regarded as a function of all xt and Mt if the equilibrium

output price p∗T is substituted by sT (x0, ...xT−1,M0, ...,MT−1).

The equality in (A.30) allows us to set up the last but one exit condition in the following
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way ∫
R

π(ϕ′, p∗T−1) dF (ϕ′|xT−2) + β

∫
ϕ≥xT−1

∫
R

π(ϕ′, p∗T ) dF (ϕ′|ϕ) dF (ϕ|xT−2)

+ β

∫
ϕ<xT−1

rT dF (ϕ|xT−2)− rT−1 = 0

(A.31)

By moving further backwards in time we can consecutively specify the other exit and

entry conditions as well. The conditions (A.28) and (A.29) thus add up to a system of

2T equations with x = (x0, ..., xT−1) and M = (M0, ...,MT−1) being the only unknown

variables. The roots of this system, which represent a dynamic equilibrium, cannot be

found analytically, however. They have to be computed with numerical methods, e.g., the

Newton method.

A.3 Farm gate milk prices
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Figure 7: Farm gate price for milk in Germany
Source: Zentrale Markt- und Preisberichtsstelle (ZMP), Statistisches Bundesamt (2013)
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Fariñas, J. C. and S. Ruano (2005). Firm productivity, heterogeneity, sunk costs and

market selection. International Journal of Industrial Organization 23 (7-8), 505–534.

34



Feil, J.-H. and O. Musshoff (2013). Modelling investment and disinvestment decisions

under competition, uncertainty and different market interventions. Economic Mod-

elling 35 (0), 443–452.

Feldman, M. and C. Gilles (1985). An expository note on individual risk without aggregate

uncertainty. Journal of Economic Theory 35 (1), 26–32.

Féménia, F. and A. Gohin (2011). Dynamic modelling of agricultural policies: The role

of expectation schemes. Economic Modelling 28 (4), 1950–1958.

Foltz, J. D. (2004). Entry, exit, and farm size: Assessing an experiment in dairy price

policy. American Journal of Agricultural Economics 86 (3), 594–604.

Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run equilibrium. Econo-

metrica 60 (5), 1127–1150.

Jorgenson, D. W. and M. P. Timmer (2011). Structural change in advanced nations: A

new set of stylised facts. Scandinavian Journal of Economics 113 (1), 1–29.

Jovanovic, B. (1982). Selection and the evolution of industry. Econometrica 50 (3), 649–

670.

Judd, K. L. (1985). The law of large numbers with a continuum of iid random variables.

Journal of Economic Theory 35 (1), 19–25.

Leahy, J. V. (1993). Investment in competitive equilibrium: The optimality of myopic

behavior. The Quarterly Journal of Economics 108 (4), 1105–1133.

Leombruni, R. and M. Richiardi (2005). Why are economists sceptical about agent-based

simulations? Physica A: Statistical Mechanics and its Applications 355 (1), 103–109.

Matsumoto, A., P. Cova, M. Pisani, and A. Rebucci (2011). News shocks and asset price

volatility in general equilibrium. Journal of Economic Dynamics and Control 35 (12),

2132–2149.

Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggregate

industry productivity. Econometrica 71 (6), 1695–1725.

Oskam, A. and D. Speijers (1992). Quota mobility and quota values: Influence on the

structural development of dairy farming. Food Policy 17 (1), 41–52.

Petrick, M. and M. Kloss (2012). Drivers of agricultural capital productivity in selected

EU member states. Factor Markets Working Paper 30, 1–41.
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